84 research outputs found

    Using electron fluid models to analyze plasma thruster discharges

    Get PDF
    Fluid models of the slow-dynamics of magnetized, weakly-collisional electrons lead to build computationally-affordable, long-time simulations of plasma discharges in Hall-effect and electrodeless plasma thrusters. This paper discusses the main assumptions and techniques used in 1D to 3D electron fluid models, and some examples illustrate their capabilities. Critical aspects of these fluid models are the expressions for the pressure tensor, the heat flux vector, the plasma-wall fluxes, and the high-frequency-averaged electron transport and heating caused by plasma waves, generated either by turbulence or external irradiation. The different orders of magnitude of the three scalar momentum equations characterize the electron anisotropic transport. Central points of the discussion are: the role of electron inertia, magnetically-aligned meshes versus Cartesian-type ones, the use of a thermalized potential and the infinite mobility limit, the existence of convective-type heat fluxes, and the modeling of the Debye sheath, and wall fluxes. Plasma plume models present their own peculiarities, related to anomalous parallel cooling and heat flux closures, the matching of finite plume domains with quiescent infinity, and solving fully collisionless expansions. Solutions of two 1D electron kinetic models are used to derive kinetically-consistent fluid models and compare them with more conventional ones.This work has been supported by the PROMETEO project, funded by the Comunidad de Madrid, under Grant reference Y2018/NMT-4750 PROMETEO-CM

    Low-frequency model of breathing oscillations in Hall discharges

    Get PDF
    A paradigm for Hall discharge modeling is presented whereby only the time scale of the lowest-frequency mode is explicitly resolved. The ability of such a low-frequency model to reproduce with excellent accuracy the breathing mode is demonstrated through comparisons with a fully time-dependent numerical model. Based on this formalism, an approximate linearized model is derived which essentially constitutes a one-dimensional generalization of the classical zero-dimensional predator-prey model. The model highlights the interaction of standing plasma waves with the transport of neutral species, which involves standing and convective waves of similar magnitude. It predicts a frequency which is in close agreement with the frequency of the small perturbation modes observed in simulations. Finally, it is shown that unstable modes are in general strongly nonlinear and characterized by frequencies obeying a scaling law different from that of linear modes

    Simulation of plasma flows in divergent magnetic nozzles

    Get PDF
    Images from the simulation code DIMAGNO illustrate the roles of pressure, electric, and magnetic forces in the 2-D plasma expansion in a magnetic nozzle and the generation of thrus

    Two-Dimensional Electron Model for a Hybrid Code of a Two-Stage Hall Thruster

    Get PDF
    An axisymmetric model for magnetized electrons in a Hall thruster, to be used in combination with a particle-in-cell model for heavy species, is presented. The main innovation is the admission of exchanges of electric current at the chamber walls, thus making the model applicable to a larger variety of Hall thrusters. The model is fully 2-D for regular magnetic topologies. It combines an equilibrium law for collisionless dynamics along the direction parallel to the magnetic field with drift-fluid equations for perpendicular transport. These are coupled to sheath models for the interaction with different types of walls. The derivation of a parabolic differential equation for the temperature and the full computation of the electric field work improves clarity and accuracy over previous models. Simulations of a Hall thruster with an intermediate current-driving electrode, operating in emission, floating, and collection modes are presented. Enhancement of thrust efficiency is found for the electrode working in the high-emission mode if the magnetic field strength is adjusted appropriately. The two-stage floating mode presents lower wall losses, lower plume divergence, and higher efficiency than the equivalent one-stage configuration

    Low frequency azimuthal stability of the ionization region of the Hall thruster discharge. I. Local analysis

    Get PDF
    Results based on a local linear stability analysis of the Hall thruster discharge are presented. A one-dimensional azimuthal framework is used including three species: neutrals, singly charged ions, and electrons. A simplified linear model is developed with the aim of deriving analytical expressions to characterize the stability of the ionization region. The results from the local analysis presented here indicate the existence of an instability that gives rise to an azimuthal oscillation in the +E x B direction with a long wavelength. According to the model, the instability seems to appear only in regions where the ionization and the electric field make it possible to have positive gradients of plasma density and ion velocity at the same time. A more complex model is also solved numerically to validate the analytical results. Additionally, parametric variations are carried out with respect to the main parameters of the model to identify the trends of the instability. As the temperature increases and the neutral-to-plasma density ratio decreases, the growth rate of the instability decreases down to a limit where azimuthal perturbations are no longer unstable.Support is being provided by the Air Force Office of Scientific Research, Air Force Material Command, USAF, under Grant No. FA8655-13-1-3033. Additional support comes from Spain’s R&D National Plan (Project No. AYA-2010-16699)

    The 2022 Plasma Roadmap: low temperature plasma science and technology

    Get PDF
    Documento escrito por un elevado número de autores/as, solo se referencia el/la que aparece en primer lugar y los/as autores/as pertenecientes a la UC3M.The 2022 Roadmap is the next update in the series of Plasma Roadmaps published by Journal of Physics D with the intent to identify important outstanding challenges in the field of low-temperature plasma (LTP) physics and technology. The format of the Roadmap is the same as the previous Roadmaps representing the visions of 41 leading experts representing 21 countries and five continents in the various sub-fields of LTP science and technology. In recognition of the evolution in the field, several new topics have been introduced or given more prominence. These new topics and emphasis highlight increased interests in plasma-enabled additive manufacturing, soft materials, electrification of chemical conversions, plasma propulsion, extreme plasma regimes, plasmas in hypersonics and data-driven plasma science.Cristina Canal acknowledges PID2019-103892RB-I00/AEI/10.13039/501100011033 Project (AEI) and the Generalitat de Catalunya for the ICREA Academia Award and SGR2017-1165. The research by Annemie Bogaerts was funded by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (ERC Synergy Grant 810182 SCOPE). Eduardo Ahedo was funded by Spain's Agencia Estatal de Investigación, under Grant No. PID2019-108034RB-I00 (ESPEOS Project)

    Low frequency azimuthal stability of the ionization region of the Hall thruster discharge. II. Global analysis

    Get PDF
    The linear stability of the Hall thruster discharge is analysed against axial-azimuthal perturbations in the low frequency range using a time-dependent 2D code of the discharge. This azimuthal stability analysis is spatially global, as opposed to the more common local stability analyses, already afforded previously (D. Escobar and E. Ahedo, Phys. Plasmas 21(4), 043505 (2014)). The study covers both axial and axial-azimuthal oscillations, known as breathing mode and spoke, respectively. The influence on the spoke instability of different operation parameters such as discharge voltage, mass flow, and thruster size is assessed by means of different parametric variations and compared against experimental results. Additionally, simplified models are used to unveil and characterize the mechanisms driving the spoke. The results indicate that the spoke is linked to azimuthal oscillations of the ionization process and to the Bohm condition in the transition to the anode sheath. Finally, results obtained from local and global stability analyses are compared in order to explain the discrepancies between both methodsSupport to D. Escobar has been provided by the Air Force Office of Scientific Research, Air Force Material Command, USAF, under Grant No. FA8655-13-1-3033. Support to E. Ahedo has come from Spain’s R&D National Plan (Project ESP-2013-41052)

    Resonant absorption in a plasma step profile

    Get PDF
    Resonant absorption of p-polarized light shined on a plane-layered plasma with a step profile, is discussed as a function of wavelength (or critical density n,) of the light: for simplicity the incidence angle is assumed small. If n, lies within or above the step, the absorption A is given by Ginzburg’s result modified by strong reflections at the foot and top of the step. The absorption above is total for particular values of nc and U. For n, crossing the top of the density step the absorption is not monotonical: it exhibits a minimum that vanishes for zero radius of curvature U there and zero collision frequency 1’ (A - Iln VI-’). The results are applied to the profile produced by irradiating a solid target with a high-intensity pulse that steepens the plasma by radiation pressure

    Trade-off study on deorbiting S/C in near polar orbit

    Get PDF
    Usual long, flexible, ED tethers kept vertical by the gravity gradient might be less efficient for deorbiting S/C in near-polar orbits than conventional (Hall, Ion) electrical thrusters. A trade-off study on this application is here presented for tethers kept horizontal and perpendicular to the orbital plane. A tether thus oriented must be rigid and short for structural reasons, requiring a non-convex cross section and a power supply as in the case of electrical thrusters. Very recent developments on bare-tether collection theory allow predicting the current collected by an arbitrary cross section. For the horizontal tether, structural considerations on length play the role of ohmic effects in vertical tethers, in determining the optimal contribution of tether mass to the overall deorbiting system. For a given deorbiting-mission impulse, tether-system mass is minimal at some optimal length that increases weakly with the impulse. The horizontal-tether system may beat both the vertical tether and the electrical thruster as regards mass requirements for a narrow length range centered at about 100 m, allowing, however, for a broad mission-impulse range

    La electrodinámica de cables espaciales

    Get PDF
    Se discuten los fundamentos que subyacen en la concepción y en las aplicaciones de un cable espacial, o tether. Si el cable es metálico y órbita en un planeta con ionosfera y campo magnético propio —la Tierra misma, o uno de los grandes planetas exteriores-, su movimiento genera una fuerza electromotriz por el mismo proceso de inducción magnética de un simple generador eléctrico, y el circuito conductor se "cierra" a través del plasma ionosférico. Se analiza el problema técnico central al que se enfrentan los tethers electrodinámicos de potencia: cómo establecer un buen contacto eléctrico entre el cable y la rarificada ionosfera. Se discute una reciente solución al problema
    • …
    corecore